UDN-企业互联网技术人气社区

板块导航

浏览  : 1139
回复  : 0

[讨论交流] Java集合框架源码剖析:PriorityQueue

[复制链接]
泡泡兔的头像 楼主
发表于 2016-10-6 10:00:22 | 显示全部楼层 |阅读模式
  总体介绍

  前面以Java ArrayDeque为例讲解了Stack和Queue,其实还有一种特殊的队列叫做PriorityQueue,即优先队列。优先队列的作用是能保证每次取出的元素都是队列中权值最小的(Java的优先队列每次取最小元素,C++的优先队列每次取最大元素)。这里牵涉到了大小关系,元素大小的评判可以通过元素本身的自然顺序(natural ordering),也可以通过构造时传入的比较器(Comparator,类似于C++的仿函数)。

  Java中PriorityQueue实现了Queue接口,不允许放入null元素;其通过堆实现,具体说是通过完全二叉树(complete binary tree)实现的小顶堆(任意一个非叶子节点的权值,都不大于其左右子节点的权值),也就意味着可以通过数组来作为PriorityQueue的底层实现。
1.png

  上图中我们给每个元素按照层序遍历的方式进行了编号,如果你足够细心,会发现父节点和子节点的编号是有联系的,更确切的说父子节点的编号之间有如下关系:

  leftNo = parentNo*2+1

  rightNo = parentNo*2+2

  parentNo = (nodeNo-1)/2

  通过上述三个公式,可以轻易计算出某个节点的父节点以及子节点的下标。这也就是为什么可以直接用数组来存储堆的原因。

  PriorityQueue的peek()和element操作是常数时间,add(), offer(), 无参数的remove()以及poll()方法的时间复杂度都是log(N)。

  方法剖析

  add()和offer()

  add(E e)和offer(E e)的语义相同,都是向优先队列中插入元素,只是Queue接口规定二者对插入失败时的处理不同,前者在插入失败时抛出异常,后则则会返回false。对于PriorityQueue这两个方法其实没什么差别。
1.png

  新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。
  1. //offer(E e)
  2. public boolean offer(E e) {
  3.     if (e == null)//不允许放入null元素
  4.         throw new NullPointerException();
  5.     modCount++;
  6.     int i = size;
  7.     if (i >= queue.length)
  8.         grow(i + 1);//自动扩容
  9.     size = i + 1;
  10.     if (i == 0)//队列原来为空,这是插入的第一个元素
  11.         queue[0] = e;
  12.     else
  13.         siftUp(i, e);//调整
  14.     return true;
  15. }
复制代码

  上述代码中,扩容函数grow()类似于ArrayList里的grow()函数,就是再申请一个更大的数组,并将原数组的元素复制过去,这里不再赘述。需要注意的是siftUp(int k, E x)方法,该方法用于插入元素x并维持堆的特性。
  1. //siftUp()
  2. private void siftUp(int k, E x) {
  3.     while (k > 0) {
  4.         int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2
  5.         Object e = queue[parent];
  6.         if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法
  7.             break;
  8.         queue[k] = e;
  9.         k = parent;
  10.     }
  11.     queue[k] = x;
  12. }
复制代码

  新加入的元素x可能会破坏小顶堆的性质,因此需要进行调整。调整的过程为:从k指定的位置开始,将x逐层与当前点的parent进行比较并交换,直到满足x >= queue[parent]为止。注意这里的比较可以是元素的自然顺序,也可以是依靠比较器的顺序。

  element()和peek()

  element()和peek()的语义完全相同,都是获取但不删除队首元素,也就是队列中权值最小的那个元素,二者唯一的区别是当方法失败时前者抛出异常,后者返回null。根据小顶堆的性质,堆顶那个元素就是全局最小的那个;由于堆用数组表示,根据下标关系,0下标处的那个元素既是堆顶元素。所以直接返回数组0下标处的那个元素即可。
1.png

  代码也就非常简洁:
  1. //peek()
  2. public E peek() {
  3.     if (size == 0)
  4.         return null;
  5.     return (E) queue[0];//0下标处的那个元素就是最小的那个
  6. }
复制代码

  remove()和poll()

  remove()和poll()方法的语义也完全相同,都是获取并删除队首元素,区别是当方法失败时前者抛出异常,后者返回null。由于删除操作会改变队列的结构,为维护小顶堆的性质,需要进行必要的调整。
1.png

  代码如下:
  1. public E poll() {
  2.     if (size == 0)
  3.         return null;
  4.     int s = --size;
  5.     modCount++;
  6.     E result = (E) queue[0];//0下标处的那个元素就是最小的那个
  7.     E x = (E) queue[s];
  8.     queue[s] = null;
  9.     if (s != 0)
  10.         siftDown(0, x);//调整
  11.     return result;
  12. }
复制代码

  上述代码首先记录0下标处的元素,并用最后一个元素替换0下标位置的元素,之后调用siftDown()方法对堆进行调整,最后返回原来0下标处的那个元素(也就是最小的那个元素)。重点是siftDown(int k, E x)方法,该方法的作用是从k指定的位置开始,将x逐层向下与当前点的左右孩子中较小的那个交换,直到x小于或等于左右孩子中的任何一个为止。
  1. //siftDown()
  2. private void siftDown(int k, E x) {
  3.     int half = size >>> 1;
  4.     while (k < half) {
  5.         //首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标
  6.         int child = (k << 1) + 1;//leftNo = parentNo*2+1
  7.         Object c = queue[child];
  8.         int right = child + 1;
  9.         if (right < size &&
  10.             comparator.compare((E) c, (E) queue[right]) > 0)
  11.             c = queue[child = right];
  12.         if (comparator.compare(x, (E) c) <= 0)
  13.             break;
  14.         queue[k] = c;//然后用c取代原来的值
  15.         k = child;
  16.     }
  17.     queue[k] = x;
  18. }
复制代码

  remove(Object o)

  remove(Object o)方法用于删除队列中跟o相等的某一个元素(如果有多个相等,只删除一个),该方法不是Queue接口内的方法,而是Collection接口的方法。由于删除操作会改变队列结构,所以要进行调整;又由于删除元素的位置可能是任意的,所以调整过程比其它函数稍加繁琐。具体来说,remove(Object o)可以分为2种情况:1. 删除的是最后一个元素。直接删除即可,不需要调整。2. 删除的不是最后一个元素,从删除点开始以最后一个元素为参照调用一次siftDown()即可。此处不再赘述。
1.png

  具体代码如下:
  1. //remove(Object o)
  2. public boolean remove(Object o) {
  3.     //通过遍历数组的方式找到第一个满足o.equals(queue[i])元素的下标
  4.     int i = indexOf(o);
  5.     if (i == -1)
  6.         return false;
  7.     int s = --size;
  8.     if (s == i) //情况1
  9.         queue[i] = null;
  10.     else {
  11.         E moved = (E) queue[s];
  12.         queue[s] = null;
  13.         siftDown(i, moved);//情况2
  14.         ......
  15.     }
  16.     return true;
  17. }
复制代码

相关帖子

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关于我们
联系我们
  • 电话:010-86393388
  • 邮件:udn@yonyou.com
  • 地址:北京市海淀区北清路68号
移动客户端下载
关注我们
  • 微信公众号:yonyouudn
  • 扫描右侧二维码关注我们
  • 专注企业互联网的技术社区
版权所有:用友网络科技股份有限公司82041 京ICP备05007539号-11 京公网网备安1101080209224 Powered by Discuz!
快速回复 返回列表 返回顶部